
Solution of HW4

Compulsory Part:

1 Obviously the MC is finite and irreducible, hence it is positive recurrent. Moreover,
the chain is aperiodic, hence it has a unique stationary distribution π. Let π =
(π(0), π(1), π(2)), then πP = π implies that

0.4π(0) + 0.3π(1) + 0.2π(2) = π(0),

0.4π(0) + 0.4π(1) + 0.4π(2) = π(1),

0.2π(0) + 0.3π(1) + 0.4π(2) = π(2).

Together with π(0)+ π(1)+ π(2) = 1, we get π = (π(0), π(1), π(2)) = (0.3, 0.4, 0.3).

3 Note that π satisfies πPm = π for any positive integer m. Since x leads to y, there
is a positive integer n such that P n(x, y) > 0. Hence

π(y) =
∑
z∈S

π(z)P n(z, y) ≥ π(x)P n(x, y) > 0.

6 The transition matrix is given by

P =


0 1 0 0 0 · · ·
q 0 p 0 0 · · ·
0 q 0 p 0 · · ·
0 0 q 0 p · · ·
... ... ... ... ... . . .

 .

Suppose that the stationary distribution π exists. Then by πP = π,

π(1)q = π(0) ⇒ π(1) =
1

q
π(0),

π(0) + π(2)q = π(1) ⇒ π(2) =
π(1)− π(0)

q
=

p

q2
π(0),

π(1)p+ π(3)q = π(2) ⇒ π(2) =
π(2)− pπ(1)

q
=

p2

q3
π(0),

· · ·

By induction, π(n) = π(0)

p

(
p

q

)n

, n ≥ 1.

If p ≥ q (i.e. p ≥ 1/2), then
∑∞

n=1 π(n) ≥
1
p

∑∞
n=1 π(0) = ∞. Thus, the stationary

distribution does not exist.
On the other hand, if p < q (i.e. p < 1/2), we have

∞∑
n=0

π(n) =

(
1 +

1

p

∞∑
n=1

(
p

q

)n
)
π(0) =

2(1− p)

1− 2p
π(0).
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Hence the unique stationary disrtibution is given by

π(0) =
1− 2p

2(1− p)
, π(n) =

1− 2p

2(1− p)p

(
p

1− p

)n

, n ≥ 1.

14 Suppose that the stationary distribution π exists. Then πP = P and
∑∞

x=0 π(x) = 1
imply that

π(0) =
∞∑
x=0

π(x)P (x, 0) = (1− p)
∞∑
x=0

π(x) = 1− p,

π(1) = π(0)P (0, 1) = (1− p)p,

π(2) = π(1)P (1, 2) = (1− p)p2,

· · ·

By induction, π(n) = (1− p)pn, n ≥ 0.
On the other hand, check that above π satisfies both

∑∞
n=0 π(n) = 1 and π(n) =∑∞

m=0 π(m)P (m,n), n ≥ 0. Hence π = (1− p, (1− p)p, (1− p)p2, · · · ) is the unique
stationary distribution.

AQ The transition diagram of the chain is

3

5

1 1 C12

4

2/3

1/3

5/6

1/6C2

1/8

1/4

5/8

1/3

1/3

1/3

for which we can see that C1 = {1} and C2 = {2, 4} are two irreducible closed sets,
and 3, 5 are the transient states.
For convenience, let us permute the matrix into canonical form

Pcan =



1 2 4 3 5
1 1 0 0 0 0
2 0 2/3 1/3 0 0
4 0 1/6 5/6 0 0
3 1/8 1/4 0 5/8 0
5 1/3 0 0 1/3 1/3


We first find the stationary distributions of the chain when restricted to these irre-
ducible closed sets.
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• For C1 = {1}, since 1 is an absorbing state (with restricted transition matrix
P1 =

(
1
)
), it is easy to see that the stationary distribution is π1 = (1)

• For C2 = {2, 4}, the transition matrix of the chain when restricted on C2 is

P2 =

(
2/3 1/3
1/6 5/6

)
We first find the eigenvalues of P2.
The characteristic polynomial of P2 is

det(λI2 − P2) = λ2 − 3

2
t+

1

2
= (λ− 1

2
)(λ− 1)

so the eigenvalues are λ = 1, λ = 1/2. We can see that 1 is a simple eigenvalue,
and all other eigenvalues have modulus less than 1.
To find the left eigenvector associated to the eigenvalue 1, we solve for the
equation

π2 = π2P2

(I − PT
2 )π

T
2 = πT

2(
1/3 −1/6
−1/3 1/6

)
πT
2 = πT

2

which we can solve as π2 = (t, 2t) for t ∈ C. Normalizing the solution, we
obtain the stationary distribution π2 = (1/3, 2/3), which has nonnegative en-
tries.

By the theorem from lectures, the limit transition matrices when the chain is re-
stricted to these irreducible closed sets exist, and take the form

lim
n→∞

P n
1 =

(
1
)
, lim

n→∞
P n
2 =

(
1/3 2/3
1/3 2/3

)
Let us now find the limit transition matrix for the condensed chain, which has the
transition matrix

P̃ =


C1 C2 3 5

C1 1 0 0 0
C2 0 1 0 0
3 1/8 1/4 5/8 0
5 1/3 0 1/3 1/3

 =

(
I2 0
R Q

)

with
R =

(
1/8 1/4
1/3 0

)
, Q =

(
5/8 0
1/3 1/3

)
For the condensed chain, the fundamental matrix is

N = (I −Q)−1 =

(
8/3 0
4/3 3/2

)
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and so
NR =

(
1/3 2/3
2/3 1/3

)
which implies

lim
n→∞

P̃ n =

(
I2 0
NR 0

)
=


C1 C2 3 5
1 0 0 0
0 1 0 0
1/3 2/3 0 0
2/3 1/3 0 0


Combined, the limit transition matrix of the original matrix is

lim
n→∞

P n
can =



1 2 4 3 5
1 1 0 0 0 0
2 0 1/3 2/3 0 0
4 0 1/3 2/3 0 0
3 1/3 2/9 4/9 0 0
5 2/3 1/9 2/9 0 0


As we permute the original transition matrix into canonical form, we should permute
the matrix back into the original order

lim
n→∞

P n =


1 2 3 4 5

1 1 0 0 0 0
2 0 1/3 0 2/3 0
3 1/3 2/9 0 4/9 0
4 0 1/3 0 2/3 0
5 2/3 1/9 0 2/9 0


Optional Part:

2 Suppose that the chain has a stationaty distribution π, then it satisfies πP = π,
that is, for any y ∈ S,

π(y) =
∑
x∈S

π(x)P (x, y) =
∑
x∈S

π(x)αy = αy.

Also one can check that π(y) = αy, y ∈ S satisfies∑
y∈S

π(y) =
∑
y∈S

αy =
∑
y∈S

P (x, y) = 1.

Hence π(y) = αy, y ∈ S is the unique stationary distribution.

4 Note that π satisfies πP = π. Hence

π(y) =
∑
x∈S

π(x)P (x, y) = c
∑
x∈S

π(x)P (x, z) = cπ(z).
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7 (a) The transition matrix is given by

P =

0 1 2 3 4 · · · d− 2 d− 1 d



0 1 0 0 0 · · · 0 0 0
1
d

0 d−1
d

0 0 · · · 0 0 0
0 2

d
0 d−2

d
0 · · · 0 0 0

0 0 3
d

0 d−3
d

· · · 0 0 0
... ... ... ... ... . . . ... ... ...
0 0 0 0 0 · · · d−1

d
0 1

d

0 0 0 0 0 · · · 0 1 0

Let π be the stationary distribution. Then by πP = π,

π(1)
1

d
= π(0) ⇒ π(1) = dπ(0) =

(
d
1

)
π(0),

π(0) + π(2)
2

d
= π(1) ⇒ π(2) =

d(d− 1)π(0)

2
=
(
d
2

)
π(0),

π(1)
d− 1

d
+ π(3)

3

d
= π(2) ⇒ π(3) =

d(d− 1)(d− 2)π(0)

6
=
(
d
3

)
π(0),

· · ·

By induction, π(n) =
(
d
n

)
π(0), 0 ≤ n ≤ d. Together with

∑d
n=0 π(n) = 1, the

stationary distribution must be

π(n) =

(
d
n

)
2d

, 0 ≤ n ≤ d.

(b) The mean of this distribution is given by

d∑
x=0

x

(
d
x

)
2d

=
1

2d

d∑
x=0

x

(
d

x

)
=

d

2d

d∑
x=1

(
d− 1

x− 1

)
=

d

2d
2d−1 =

d

2
.

Note that
d∑

x=0

x2

(
d

x

)
=

d∑
x=2

x(x− 1)

(
d

x

)
+

d∑
x=1

x

(
d

x

)

= d(d− 1)
d∑

x=2

(
d− 2

x− 2

)
+ d

d∑
x=1

(
d− 1

x− 1

)
= d(d− 1)2d−2 + d2d−1.

Hence, the variance is given by

d∑
x=0

x2

(
d
x

)
2d

−

(
d∑

x=0

x

(
d
x

)
2d

)2

=
d(d− 1)

4
+

d

2
−
(
d

2

)2

=
d

4
.
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8 The transition matrix is given by

P =

0 1 2 3 4 · · · d− 2 d− 1 d



1
2

1
2

0 0 0 · · · 0 0 0
1
2d

1
2

d−1
2d

0 0 · · · 0 0 0
0 2

2d
1
2

d−2
2d

0 · · · 0 0 0
0 0 3

2d
1
2

d−3
2d

· · · 0 0 0
... ... ... ... ... . . . ... ... ...
0 0 0 0 0 · · · d−1

2d
1
2

1
2d

0 0 0 0 0 · · · 0 1
2

1
2

Let π be the stationary distribution. Then by πP = π,

π(1)
1

2d
=

π(0)

2
⇒ π(1) = dπ(0) =

(
d
1

)
π(0),

π(0)

2
+ π(2)

2

2d
=

π(1)

2
⇒ π(2) =

d(d− 1)π(0)

2
=
(
d
2

)
π(0),

π(1)
d− 1

2d
+ π(3)

3

2d
=

π(2)

2
⇒ π(3) =

d(d− 1)(d− 2)π(0)

6
=
(
d
3

)
π(0),

· · ·

By induction, π(n) =
(
d
n

)
π(0), 0 ≤ n ≤ d. Together with

∑d
n=0 π(n) = 1, the

stationary distribution must be

π(n) =

(
d
n

)
2d

, 0 ≤ n ≤ d.

The result is the same as the one of the original Ehrenfest chain.

9 Let π be the stationary distribution. The transition function is given by

P (x, y) =


qx =

(
x
d

)2
, if y = x− 1, x ̸= 0;

rx = 2
(
x
d

) (
d−x
d

)
, if y = x;

px =
(
d−x
d

)2
, if y = x+ 1, x ̸= d;

0, otherwise.

We can apply the result in page 51 of the textbook, for x ≥ 1,

πx =
p0 · · · px−1

q1 · · · qx
=

d2(d− 1)2 · · · (d− x+ 1)2

(x!)2
=

(
d

x

)2

,

and set π0 = 1 =
(
d
0

)
. By the hint,

π(0) =
1∑d

x=0 πx

=
1(
2d
d

) =

(
d
0

)2(
2d
d

) .
Hence π(x) = πxπ(0) =

(
d
x

)2(
2d
d

) , 0 ≤ x ≤ d.
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